US 20130170642A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2013/0170642 Al

Brown et al.

43) Pub. Date: Jul. 4, 2013

(54)

7
(72)

(73)

21

(22)

(63)

(60)

ELLIPTIC CURVE RANDOM NUMBER
GENERATION

Applicant: CERTICOM CORP., Mississauga (CA)
Inventors: Daniel Richard L. Brown, Mississauga

(CA); Scott Alexander Vanstone,
Campbellville (CA)

Assignee: CERTICOM CORP., Mississauga (CA)
Appl. No.: 13/770,533
Filed: Feb. 19, 2013

Related U.S. Application Data

Continuation of application No. 11/336,814, filed on
Jan. 23, 2006, now Pat. No. 8,396,213.

Provisional application No. 60/644,982, filed on Jan.
21, 2005.

Publication Classification

(51) Int.CL

HO4L 9/08 (2006.01)
(52) US.CL
(@ O HO4L 9/0869 (2013.01)
USPC oo 3807268
57) ABSTRACT

An elliptic curve random number generator avoids escrow
keys by choosing a point Q on the elliptic curve as verifiably
random. An arbitrary string is chosen and a hash of that string
computed. The hash is then converted to a field element of the
desired field, the field element regarded as the x-coordinate of
a point Q on the elliptic curve and the x-coordinate is tested
for validity on the desired elliptic curve. If valid, the x-coor-
dinate is decompressed to the point Q, wherein the choice of
which is the two points is also derived from the hash value.
Intentional use of escrow keys can provide for back up func-
tionality. The relationship between P and Q is used as an
escrow key and stored by for a security domain. The admin-
istrator logs the output of the generator to reconstruct the
random number with the escrow key.

: P 0
{ymimnrind Bnciom Mummber Generaior (RNG) ;/
; s
> Cutput
Poii Crypl R
i unit HE
: 3
— .
- 1 :
L i) Ni_46
: @
P
Bate
1’ . A
Adminisioater]
—
> =z
s &
4

]
Ndog

Patent Application Publication Jul. 4,2013 Sheet 1 of 6 US 2013/0170642 A1

&
N—_—
A =
= /il.\\%&
=2
il
g
o
ot
\.\._a../z
ol
A
&
»d
o
o3
Y
e
.um\.r oy
o o @
“3
<«x*
oy
//1::.,\
Pe-]
\wu‘ A A .
T P =
B e " =
3 P H]
u = ! &
: : fooot
; > : e
3 X3 s
i .m :
; T '
: :
“ :
; A :
' :
. :
1 ¥
: :
| N
! L]
: = :
H ﬂm v
: - .
. .
t]
; :
W2y “
o~
A
; \n\ :
4 H
; ;
: . R ‘
: o ;
; o cecmrdea 3
1] v 0 M s
N o ! 1 1
: = ;B
] s o N ¢
3 s bt § s
) 3 Ll N s
3 ? [y i
) L)
P \% ,,,,,,,,,,,,, wf o ano. H
< i

Patent Application Publication Jul. 4,2013 Sheet 2 of 6 US 2013/0170642 A1

202
Choose an arbitrary ,_/f /2{30
sting A

Compute hash H; JZM
M= FyS P

Convert hash Hiofield | s~ 2%
glement X

Testx-coordinate | 298

for validity on cuve E

Decompress X o
obiain point Q

Figure 2

Patent Application Publication Jul. 4,2013 Sheet 3 of 6 US 2013/0170642 A1

K I
. > R
19 truncaie
P30
<25
FIGURE 3
r r
oo B o
BCRNG truncate
P
(<3ES

10

FIGURE S

Input P,Q,5eed

k4

Generate
random number

Truncate
random sumber

Figure 4

Cutput ()
from Fig.2

A

Input B, Secd

Gencrate
random number (RN

Apply second hash;
FralRIN)

New output

Figure 6

uoned[qng uonednddy judyeq

9J0 $I0RYS €107 ‘v Ir

IV TP90LT0/€T0T SN

Patent Application Publication Jul. 4,2013 Sheet 5 of 6 US 2013/0170642 A1

: . 18
Q: 35 Random Number Genesator (RNG) (
5 w3 Culput
Pt Cryplographic
: it : r“’”‘j
. M
-~ A :
L 14 i 46
V 5 Vi
: : N __m//
State - :
18 {‘ ,,,,,,,,,, LAY
Y X o
Admingstrator ““""“"* .

{ Escrow Key x :\v/m
{,.J ¢
[

<4{M: <
40a

FIGURE 7

<4E)b

Choose point P as

442
standard gonsrator S
Y
Determine point Q ans
\i
Compute escrow |/ 406
key e
\4{3(3
Figure 8

40

Instituie an
administrator

Ve

A 4

Chonose and stors
an escrow koy

JSM

k4

Send value r o
administraton

i

Administrator logs
ouiput

%

Passible later use of

log to determing state __,/‘5 bty

of BCBNG

Figure 9

uoned[qng uonednddy judyeq

9J0933YS €10T ‘p Ir

IV TP90LT0/€T0T SN

US 2013/0170642 Al

ELLIPTIC CURVE RANDOM NUMBER
GENERATION

[0001] This application claims priority from U.S. Provi-
sional Patent Application No. 60/644,982 filed on Jan. 21,
2005.

FIELD OF THE INVENTION

[0002] The present invention relates to systems and meth-
ods for cryptographic random number generation.

DESCRIPTION OF THE PRIOR ART

[0003] Random numbers are utilised in many crypto-
graphic operations to provide underlying security. In public
key infrastructures, for example, the private key of a key pair
is generated by a random number generator and the corre-
sponding public key mathematically derived therefrom. A
new key pair may be generated for each session and the
randomness of the generator therefore is critical to the secu-
rity of the cryptographic system.

[0004] To provide a secure source of random numbers,
cryptographically secure pseudorandom bit generators have
been developed in which the security of each generator relies
on a presumed intractability of the underlying number-theo-
retical problem. The American National Standards Institute
(ANSI) has set up an Accredited Standards Committee (ASC)
X9 for the financial services industry, which is preparing a
American National Standard (ANS) X9.82 for cryptographic
random number generation (RNG). One of the RNG methods
in the draft of X9.82, called Dual_EC_DRBG, uses elliptic
curve cryptography (ECC) for its security. Dual_EC_DRBG
will hereinafter be referred to as elliptic curve random num-
ber generation (ECRNG).

[0005] Elliptic curve cryptography relies on the intractabil-
ity of the discrete log problem in cyclic subgroups of elliptic
curve groups. An elliptic curve E is the set of points (x, y) that
satisfy the defining equation of the elliptic curve. The defin-
ing equation is a cubic equation, and is non-singular. The
coordinates x and y are elements of a field, which is a set of
elements that can be added, subtracted and divided, with the
exception of zero. Examples of fields include rational num-
bers and real numbers. There are also finite fields, which are
the fields most often used in cryptography. An example of a
finite field is the set of integers modulo a prime g.

[0006] Without the loss of generality, the defining equation
of the elliptic curve can be in the Weierstrass form, which
depends on the field of the coordinates. When the field F is
integers modulo a prime g>3, then the Weierstrass equation
takes the form y*=x>+ax+b, where a and b are elements of the
field F.

[0007] The elliptic curve E includes the points (x, y) and
one further point, namely the point O at infinity. The elliptic
curve E also has a group structure, which means that the two
points P and Q on the curve can be added to form a third point
P+Q. The point O is the identity of the group, meaning
P+O=0+P=P, for all points P. Addition is associative, so that
P+(Q+R)=(P+)+R, and commutative, so that P+Q=Q+R. for
all points P, Q and R. Each point P has a negative point -P,
such that P+(-P)=0O. When the curve equation is the Weier-
strass equation of the form y*=x+ax+b, the negative of P=(x,
y) is determined easily as -P=(x, -y). The formula for adding
points P and Q in terms of their coordinates is only moder-
ately complicated involving just a handful of field operations.

Jul. 4,2013

[0008] The ECRNG uses as input two elliptic curve points
P and Q that are fixed. These points are not assumed to be
secret. Typically, P is the standard generator of the elliptic
curve domain parameters, and Q is some other point. In
addition a secret seed is inserted into the ECRNG.

[0009] The ECRNG has a state, which may be considered
to be an integer s. The state s is updated every time the
ECRNG produces an output. The updated state is computed
as u=z(sP), where z() is a function that converts an elliptic
curve point to an integer. Generally, 7 consists of taking the
x-coordinate of the point, and then converting the resulting
field element to an integer. Thus u will typically be an integer
derived from the x-coordinate of the point s.

[0010] The output of the ECRNG is computed as follows:
r=t(z(sQ)), where t is a truncation function. Generally the
truncation function removes the leftmost bits of its input. In
the ECRNG, the number of bits truncated depends on the
choice of elliptic curve, and typically may be in the range of
6 to 19 bits.

[0011] Although P and Q are known, it is believed that the
output r is random and cannot be predicted. Therefore suc-
cessive values will have no relationship that can be exploited
to obtain private keys and break the cryptographic functions.
The applicant has recognised that anybody who knows an
integer d such that Q=dP, can deduce an integer a such that
ed=1 mod n, where n is the order of G, and thereby have an
integer e such that P=eQ. Suppose U=sP and R=sQ, whichare
the precursors to the updated state and the ECRNG output.
With the integer e, one can compute U from R as U=eR.
Therefore, the output r=t(z(R)), and possible values of R can
be determined from r. The truncation function means that the
truncated bits of R would have to be guessed. The z function
means that only the x-coordinate is available, so that decom-
pression would have to be applied to obtain the full point R. In
the case of the ECRNG, there would be somewhere between
about 2°=64 and 2*° (i.e. about half a million) possible points
R which correspond to r, with the exact number depending on
the curve and the specific value of r.

[0012] The full set of R values is easy to determine from r,
and as noted above, determination of the correct value for R
determines U=eR, if one knows e. The updated state is u=z
(U), so it can be determined from the correct value of R.
Therefore knowledge of r and e allows one to determine the
next state to within a number of possibilities somewhere
between 2° and 2°. This uncertainty will invariably be elimi-
nated once another output is observed, whether directly or
indirectly through a one-way function.

[0013] Once the next state is determined, all future states of
ECRNG can be determined because the ECRNG is a deter-
ministic function. (at least unless additional random entropy
1s fed into the ECRNG state) All outputs of the ECRNG are
determined from the determined states of the ECRNG. There-
fore knowledge of r and e, allows one to determine all future
outputs of the ECRNG.

[0014] Tthas therefore been identified by the applicant that
this method potentially possesses a trapdoor, whereby stan-
dardizers or implementers of the algorithm may possess a
piece of information with which they can use a single output
and an instantiation of the RNG to determine all future states
and output of the RNG, thereby completely compromising its
security. It is therefore an object of the present invention to
obviate or mitigate the above mentioned disadvantages.

US 2013/0170642 Al

SUMMARY OF THE INVENTION

[0015] In one aspect, the present invention provides a
method for computing a verifiably random point Q for use
with another point P in an elliptic curve random number
generator comprising computing a hash including the point P
as an input, and deriving the point Q from the hash.

[0016] In another aspect, the present invention provides a
method for producing an elliptic curve random number com-
prising generating an output using an elliptic curve random
number generator, and truncating the output to generate the
random number.

[0017] Inyetanotheraspect, the present invention provides
a method for producing an elliptic curve random number
comprising generating an output using an elliptic curve ran-
dom number generator, and applying the output to a one-way
function to generate the random number.

[0018] Inyetanotheraspect, the present invention provides
amethod of backup functionality for an elliptic curve random
number generator, the method comprising the steps of com-
puting an escrow key e upon determination of a point Q of the
elliptic curve, whereby P=eQ, P being another point of the
elliptic curve; instituting an administrator, and having the
administrator store the escrow key e; having members with an
elliptic curve random number generator send to the adminis-
trator, an output r generated before an output value of the
generator, the administrator logging the output r for future
determination of the state of the generator.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] An embodiment of the invention will now be
described by way of example only with reference to the
appended drawings wherein:

[0020] FIG. 1 is a schematic representation of a crypto-
graphic random number generation scheme.

[0021] FIG.21saflow chart illustrating a selection process
for choosing elliptic curve points.

[0022] FIG. 3isablock diagram, similar to FIG. 1 showing
a further embodiment

[0023] FIG. 4 is flow chart illustrating the process imple-
mented by the apparatus of FIG. 3.

[0024] FIG.5isablock diagram showing a further embodi-
ment.
[0025] FIG. 6 is a flow chart illustrating yet another

embodiment of the process of FI1G. 2.

[0026] FIG. 7 is schematic representation of an adminis-
trated cryptographic random number generation scheme.
[0027] FIG. 8 is a flow chart illustrating an escrow key
selection process.

[0028] FIG. 9 is a flow chart illustrating a method for
securely utilizing an escrow key.

DETAILED DESCRIPTION OF THE INVENTION

[0029] Referring therefore to FIG. 1, a cryptographic ran-
dom number generator (ECRNG) 10 includes an arithmetic
unit 12 for performing elliptic curve computations. The
ECRNG also includes a secure register 14 to retain a state
value s and has a pair of inputs 16, 18 to receive a pair of
initialisation points P, Q. The points P, Q are elliptic curve
points that are assumed to be known. An output 20 is provided
for communication of the random integer to a cryptographic
module 22. The initial contents of the register 14 are provided
by a seed input S.

Jul. 4,2013

[0030] This input 16 representing the point P is in a first
embodiment, selected from a known value published as suit-
able for such use.

[0031] The input 18 is obtained from the output of a one
way function in the form of a bash function 24 typically a
cryptographically secure hash function such as SHAI or
SHA2 that receives as inputs the point P. The function 24
operates upon an arbitrary bit string A to produce a hashed
output 26. The output 26 1s applied to arithmetic unit 12 for
further processing to provide the input Q.

[0032] In operation, the ECRNG receives a bit string as a
seed, which is stored in the register 14. The seed is maintained
secret and is selected to meet pre-established cryptographic
criteria, such as randomness and Hamming weight, the crite-
ria being chosen to suit the particular application.

[0033] In order to ensure that d is not likely to be known
(e.g. such that P=dQ, and ed=1 mod n); one or both of the
inputs 16, 18 is chosen so as to be verifiably random. In the
embodiment of FIG. 1, Q is chosen in a way that is verifiably
random by deriving it from the output of a hash-function 24
(preferably one-way) whose input includes the point P. As
shown in FIG. 2 an arbitrary string A is selected at step 202,
a hash H of A is computed at step 204 with P and optionally
S as inputs to a hash-based function F(), and the hash H is
then converted by the arithmetic unit 12 to a field element X
of a desired field F at step 206. P may be pre-computed or
fixed, or may also be chosen to be a verifiably random chosen
value. The field element X is regarded as the x-coordinate of
Q (thus a “compressed” representation of Q). The x-coordi-
nate 1is then tested for validity on the desired elliptic curve E
at step 208, and whether or not X is valid, is determined at step
210. If valid, the x-coordinate provided by element X is
decompressed to provide point Q at step 212. The choice of
which of two possible values of the y co-ordinate is generally
derived from the hash value.

[0034] The points P and Q are applied at respective inputs
16, 18 and the arithmetic unit 12 computes the point sQQ where
s is the current value stored in the register 14. The arithmetic
unit 12 converts the x-coordinate of the point (in this example
point sQ) to an integer and truncates the value to obtain
r=t(z(sQ)). The truncated value r is provided to the output 20.
[0035] The arithmetic unit 12 similarly computes a value to
update the register 14 by computing sP, where s is the value of
theregister 14, and converting the x-coordinate of the point sP
to an integer u. The integer u is stored in the register to replace
s for the next iteration. {ditto above}

[0036] As noted above, the point P may also be verifiably
random, but may also be an established or fixed value. There-
fore, the embodiment of FIG. 1 may be applied or retrofitted
to systems where certain base points (e.g. P) are already
implemented in hardware. Typically, the base point P will be
some already existing base point, such as those recommended
in Federal Information Processing Standard (FIPS) 186-2. In
such cases, P is not chosen to be verifiably random.

[0037] Ingeneral, inclusion of the point P in the input to the
hash function ensures that P was determined before Q is
determined, by virtue of the one-way property of the hash
function and since Q is detived from an already determined P.
Because P was determined before Q, it is clearly understood
that P could not have been chosen as a multiple of Q (e.g.
where P=eQ)), and therefore finding d is generally as hard as
solving a random case of the discrete logarithm problem.
[0038] Thus, having a seed value S provided and a hash-
based function F() provided, a verifier can determine that

US 2013/0170642 Al

Q=F(S,P), where P may or may not be verifiably random.
Similarly, one could compute P=F(S,Q) with the same effect,
though it is presumed that this is not necessary given that the
value of P in the early drafts of X9.82 were identical to the
base points specified in FIPS 186-2.

[0039] The generation of Q from a bit string as outlined
above may be performed externally of the ECRNG 10, or,
preferably, internally using the arithmetic unit 12. Where both
P and Q are required to be verifiably random, a second hash
function 24 shown in ghosted outlinein FIG. 1 is incorporated
to generate the coordinate of point P from the bit string A. By
providing a hash function for at least one of the inputs, a
verifiably random input is obtained.

[0040] It will also be noted that the output generated is
derived from the x coordinate of the point sP. Accordingly, the
inputs 16, 18 may be the x coordinates of P and Q and the
corresponding values of sP and sQ obtained by using Mont-
gomery multiplication techniques thereby obviating the need
for recovery of the y coordinates.

[0041] Analternative method for choosing Q is to choose Q
in some canonical form, such that its bit representation con-
tains some string that would be difficult to produce by gen-
erating Q=dP for some known d and P for example a repre-
sentation of a name. It will be appreciated that intermediate
forms between this method and the preferred method may
also exist, where Q is partly canonical and partly derived
verifiably at random. Such selection of Q, whether verifiably
random, canonical, or some intermediate, can be called veri-
fiable.

[0042] Another alternative method for preventing a key
escrow attack on the output of an ECRNG, shown in FIGS. 3
and 4 is to add a truncation function 28 to ECRNG 10 to
truncate the ECRNG output to approximately half the length
of a compressed elliptic curve point. Preferably, this opera-
tionis done in addition to the preferred method of FIGS. 1and
2, however, it will be appreciated that it may be performed as
a primary measure for preventing a key escrow attack. The
benefit of truncation is that the list of R values associated with
asingle ECRNG output r is typically infeasible to search. For
example, for a 160-bit elliptic curve group, the number of
potential points R in the list is about 2%, and searching the list
would be about as hard as solving the discrete logarithm
problem. The cost of this method is that the ECRNG is made
half as efficient, because the output length is effectively
halved.

[0043] Yet another alternative method shown in FIGS. 5
and 6 comprises filtering the output of the ECRNG through
another one-way function F,,,, identified as 34, such as ahash
function to generate a new output. Again, preferably, this
operation is performed in addition to the preferred method
shown in FIG. 2, however may be performed as a primary
measure to prevent key escrow attacks. The extra hash is
relatively cheap compared to the elliptic curve operations
performed in the arithmetic unit 12, and does not significantly
diminish the security of the ECRNG.

[0044] As discussed above, to effectively prevent the exist-
ence of escrow keys, a verifiably random Q should be accom-
panied with either a verifiably random P or a pre-established
P. A pre-established P may be a point P that has been widely
publicized and accepted to have been selected before the
notion of the ECRNG 12, which consequently means that P
could not have been chosen as P=eQ because Q was not
created at the time when P was established.

Jul. 4,2013

[0045] Whilst the above techniques ensure the security of
the system using the ECRNG by “closing” the trap door, it is
also possible to take advantage of the possible interdepen-
dence of P and Q, namely where P=eQQ, through careful use of
the existence of e.

[0046] Insucha scenario, the value a may be regarded as an
escrow key. If P and Q are established in a security domain
controlled by an administrator, and the entity who generates
Q for the domain does so with knowledge of e (or indirectly
via knowledge of d). The administrator will have an escrow
key for every ECRNG that follows that standard.

[0047] Escrow keys are known to have advantages in some
contexts. They can provide a backup functionality. If a cryp-
tographic key is lost, then data encrypted under that key is
also lost. However, encryption keys are generally the output
of random number generators. Therefore, if the ECRNG is
used to generate the encryption key K, then it may be possible
that the escrow key e can be used to recover the encryption
key K. Escrow keys can provide other functionality, such as
for use in a wiretap. In this case, trusted law enforcement
agents may need to decrypt encrypted traffic of criminals, and
to do this they may want to be able to use an escrow key to
recover an encryption key.

[0048] FIG. 7 shows a domain 40 having a number of
ECRNG’s 10 each associated with a respective member of the
domain 40. The domain 40 communicates with other domains
40a,405,40¢ through a network 42, such as the internet. Each
ECRNG of a domain has a pair of identical inputs P,Q. The
domain 40 includes an administrator 44 who maintains in a
secure manner an escrow key e.

[0049] The administrator 44 chooses the values of P and Q
such that he knows an escrow key e such that Q=eP. Other
members of the domain 40 use the values of P and Q, thereby
giving the administrator 44 an escrow key e that works for all
the members of the organization.

[0050] This is most useful in its backup functionality for
protecting against the loss of encryption keys. Escrow keys e
could also be made member-specific so that each member has
its own escrow ¢' from points selected by the administrator 44.

[0051] As generally denoted as numeral 400 in FIG. 8, the
administrator initially selects a point P which will generally
be chosen as the standard generator P for the desired elliptic
curve 402. The administrator then selects a value d and the
point Q will be determined as Q=dP 404, for some random
integer d of appropriate size. The escrow key e is computed as
e=d' mod n 406, where n is the order of the generator P and
stored by the administrator.

[0052] The secure use of such an escrow key 34e is gener-
ally denoted by numeral 500 and illustrated in FIG. 9. The
administrator 44 is first instituted 502 and an escrow keys e
would be chosen and stored 504 by the administrator 44

[0053] In order for the escrow key to function with full
effectiveness, the escrow administrator 44 needs direct access
to an ECRNG output value r that was generated before the
ECRNG output value k (i.e. 16) which is to be recovered. It is
not sufficient to have indirect access to r via a one-way func-
tion or an encryption algorithm. A formalized way to achieve
this is to have each member with an ECRNG 12 communicate
with the administrator 44 as indicated at46 in FIG. 7. and step
506 in FIG. 9. This may be most useful for encrypted file
storage systems or encrypted email accounts. A more seam-
less method may be applied for cryptographic applications.
For example, in the SSL and TLS protocols, which are used

US 2013/0170642 Al

for securing web (HTTP) traffic, a client and server perform a
handshake in which their first actions are to exchange random
values sent in the clear.

[0054] Many other protocols exchange such random val-
ues, often called nonces. If the escrow administrator observes
these nonces, and keeps a log of them 508, then later it may be
able to determine the necessary r value. This allows the
administrator to determine the subsequent state of the
ECRNG 12 of the client or server 510 (whoever is a member
of the domain), and thereby recover the subsequent ECRNG
12 values. In particular, for the client who generally generates
arandom pre-master secret from which is derived the encryp-
tionkey for the SSL or TLS session, the escrow key may allow
recovery of the session key. Recovery of the session key
allows recovery of the whole SSL or TLS session.

[0055] Ifthe session was logged, then it may be recovered.
This does not compromise long-term private keys, just ses-
sion keys obtained from the output of the ECRNG, which
should alleviate any concern regarding general suspicions
related to escrows.

[0056] Whilst escrow keys are also known to have disad-
vantages in other contexts, their control within specific secu-
rity domains may alleviate some of those concerns. For
example, with digital signatures for non-repudiation, it is
crucial that nobody but the signer has the signing key, other-
wise the signer may legitimately argue the repudiation of
signatures. The existence of escrow keys means the some
other entity has access to the signing key, which enables
signers to argue that the escrow key was used to obtain their
signing key and subsequently generate their signatures. How-
ever, where the domain is limited to a particular organisation
or part of an organisation it may be sufficient that the organi-
sation cannot repudiate the signature. Lost signing keys do
not imply lost data, unlike encryption keys, so there is little
need to backup signing keys.

[0057] Although the invention has been described with ref-
erence to certain specific embodiments, various modifica-
tions thereof will be apparent to those skilled in the art with-
out departing from the spirit and scope of the invention as
outlined in the claims appended hereto.

1-19. (canceled)

20. A computer-implemented method of generating a ran-
dom number for use in a cryptographic operation, the method
comprising:

generating a random nuniber by operating one or more

processors on a pair of inputs, each input representing at
least one coordinate of a respective one of a pair of
elliptic curve points, at least one input of the pair of
inputs being generated in a manner to ensure that one
point of the pair of elliptic curve points is not a multiple
of the other point of the pair of elliptic curve points.

21. The method of claim 20, wherein the at least one of the
pair of inputs is obtained from an output of a hash function.

22. The method of claim 21, wherein the other input of the
pair of inputs is obtained from an output of a hash function.

23. The method of claim 21, wherein the other input of the
pair of inputs is used as an input to the hash function.

24. The method of claim 23, wherein the other input of the
pair of inputs represents an elliptic curve point.

25. The method of claim 21, further comprising:

testing the output of the hash function to determine

whether the output is a valid coordinate of a point on an
elliptic curve before using the output as one of the
inputs.

Jul. 4,2013

26. The method of claim 25, wherein the output is a valid
coordinate of a first elliptic curve point, and the method
comprises obtaining another coordinate of the first elliptic
curve point before using the first elliptic curve point as one of
the inputs.

27. The method of claim 20, further comprising using a
secret value to compute scalar multiples of each of the points
represented by the pair of inputs.

28. The method of claim 27, further comprising using one
of the scalar multiples to derive the random number and using
the other of the scalar multiples to change the secret value for
subsequent use.

29. The method of claim 27, further comprising deriving
the random number from one ofthe scalar multiples by select-
ing one coordinate of the point represented by the one of the
scalar multiples and truncating the coordinate to a bit string
for use as the random number.

30. The method of claim 29, wherein truncating the coor-
dinate includes removing the highest order half of the bits in
an elliptic curve point representation.

31. The method of claim 27, further comprising deriving
the random number from one ofthe scalar multiples by select-
ing one coordinate of the point represented by the one of the
scalar multiples and hashing the one coordinate to provide a
bit string for use as the random number.

32. The method of claim 20, comprising generating the pair
of inputs in a manner to ensure that one point of the pair of
elliptic curve points is not a multiple of the other point of the
pair of elliptic curve points.

33. A non-transitory computer-readable medium compris-
ing instructions that are operable when executed by one or
more processors to perform operations comprising:

generating a random number from a pair of inputs, each

input representing at least one coordinate of a respective
one of a pair of elliptic curve points, at least one input of
the pair of inputs being generated in a manner to ensure
that one point of the pair of elliptic curve points is not a
multiple of the other point of the pair of elliptic curve
points.

34. The computer-readable medium of claim 33, wherein
the at least one of the pair of inputs is obtained from an output
of a hash function.

35. The computer-readable medium of claim 34, wherein
the other input of the pair of inputs is obtained from an output
of a hash function.

36. The computer-readable medium of claim 34, wherein
the other input of the pair of inputs is used as an input to the
hash function.

37. The computer-readable medium of claim 36, wherein
the other input of the pair of inputs represents an elliptic curve
point.

38. The computer-readable medium of claim 34, the opera-
tions further comprising:

testing the output of the hash function to determine

whether the output is a valid coordinate of a point on an
elliptic curve before using the output as one of the
inputs.

39. The computer-readable medium of claim 38, wherein
the output is a valid coordinate of a first elliptic curve point,
and the operations comprise obtaining another coordinate of
the first elliptic curve point before using the first elliptic curve
point as one of the inputs.

US 2013/0170642 Al

40. The computer-readable medium of claim 33, the opera-
tions further comprising using a secret value to compute
scalar multiples of each of the points represented by the pair
of inputs.

41. The computer-readable medium of claim 40, the opera-
tions further comprising using one of the scalar multiples to
derive the random number and using the other of the scalar
multiples to change the secret value for subsequent use.

42. The computer-readable medium of claim 40, the opera-
tions further comprising deriving the random number from
one of the scalar multiples by selecting one coordinate of the
point represented by the one of the scalar multiples and trun-
cating the coordinate to a bit string for use as the random
number.

43. The computer-readable medium of claim 42, wherein
truncating the coordinate includes removing the highest order
half of the bits in an elliptic curve point representation.

44. The computer-readable medium of claim 40, the opera-
tions further comprising deriving the random number from
one of the scalar multiples by selecting one coordinate of the
point represented by the one of the scalar multiples and hash-
ing the one coordinate to provide a bit string for use as the
random number.

45. A random number generator system comprising one or
more processors configured to:

generate a random number from a pair of inputs, each input

representing at least one coordinate of a respective one
of a pair of elliptic curve points, at least one input of the
pair of inputs being generated in a manner to ensure that
one point of the pair of elliptic curve points is not a
multiple of the other point of the pair of elliptic curve
points.

46. The elliptic curve random number generator system of
claim 45, wherein the at least one of the pair of inputs is
obtained from an output of a hash function.

47. The elliptic curve random number generator system of
claim 46, wherein the other input of the pair of inputs is
obtained from an output of a hash function.

48. The elliptic curve random number generator system of
claim 46, wherein the other input of the pair of inputs is used
as an input to the hash function.

Jul. 4,2013

49. The elliptic curve random number generator system of
claim 46, wherein the other input of the pair of inputs repre-
sents an elliptic curve point.

50. The elliptic curve random number generator system of
claim 46, the one or more processors configured to:

test the output of the hash function to determine whether

the output is a valid coordinate of a point on an elliptic
curve before using the output as one of the inputs.

51. The elliptic curve random number generator system of
claim 50, wherein the output is a valid coordinate of a first
elliptic curve point, and the one or more processors are con-
figured to obtain another coordinate of the first elliptic curve
point before using the first elliptic curve point as one of the
inputs.

52. The elliptic curve random number generator system of
claim 45, the one or more processors configured to use a
secret value to compute scalar multiples of each of the points
represented by the pair of inputs.

53. The elliptic curve random number generator system of
claim 52, the one or more processors configured to use one of
the scalar multiples to derive the random number and using
the other of the scalar multiples to change the secret value for
subsequent use.

54. The elliptic curve random number generator system of
claim 52, the one or more processors configured to derive the
random number from one of the scalar multiples by selecting
one coordinate of the point represented by the one of the
scalar multiples and truncating the coordinate to a bit string
for use as the random number.

55. The elliptic curve random number generator system of
claim 54, wherein truncating the coordinate includes remov-
ing the highest order half of the bits in an elliptic curve point
representation.

56. The elliptic curve random number generator system of
claim 52, the one or more processors configured to derive the
random number from one of the scalar multiples by selecting
one coordinate of the point represented by the one of the
scalar multiples and hashing the one coordinate to provide a
bit string for use as the random number.

L T T

	Bibliography
	Abstract
	Drawings
	Description
	Claims

